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The vibration properties of a ring subjected to angular velocity components applied
simultaneously about three mutually perpendicular axes are investigated. Ring structures
have potential applications as multi-axis rate sensors and hence the e!ects of angular
velocity on the vibration properties are practically important. Coriolis coupling between
in-plane and out-of-plane displacements of a ring due to angular velocity applied about axes
in the plane of the ring, and about the polar axis of the ring, allow it to be used as a multi-axis
rate sensor. Equations of motion are derived for the rotating ring. The combinations of
in-plane and out-of-plane displacement patterns for which Coriolis coupling is present are
investigated and the corresponding natural frequencies and mode shapes of the rotating ring
are derived. Simple analytical expressions are developed for a number of special cases and
some numerical examples are presented. The e!ect of small imperfection on the natural
frequencies of the rotating ring is also considered.

( 2000 Academic Press
1. INTRODUCTION

The range of applications for low-cost rate-sensors (rate-gyroscopes) is large and rapidly
expanding in "elds as diverse as automotive safety and navigation, defence and
bio-mechanics. A single-axis vibrating-structure rate sensor is already commercially
available that utilizes the in-plane vibration modes of a small silicon ring [1], which is
readily manufactured in large quantities using micro-machining techniques [2].

Rate sensors are often used in applications in which there is a need to measure angular
velocity about two or three axes simultaneously (e.g., roll, pitch and yaw). A novel multi-axis
sensor based on a vibrating ring structure is potentially capable of sensing angular velocity
components applied simultaneously about three mutually perpendicular axes [3]. This is
achieved by using Coriolis coupling between in-plane and out-of-plane displacements of
a ring in which a forced vibration is maintained. The principles of operation of such a sensor
are described in reference [4].

The aim of this paper is to present an analysis of the e!ects of Coriolis coupling on the
free vibration of a ring which is rotating about axes in the plane of the ring, as well as the
polar axis. This analysis may be regarded as a pre-requisite for the forced vibration case,
which is important for rate-sensor design. In rate-sensor applications, the applied rates of
turn are always three or four orders of magnitude smaller than the relevant structural
natural frequencies. In these circumstances, the e!ect of centrifugal loading is negligible and
the Coriolis coupling is the dominant e!ect which modi"es the vibration behaviour.
22-460X/00/480459#22 $35.00/0 ( 2000 Academic Press
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Many other workers have considered the dynamics of rings that are spinning about the
polar axis, see, for example, references [5}8], often placing emphasis on the e!ects of
centrifugal loading in rapidly rotating rings. The authors of the present paper are unaware
of any other published analysis dealing with the e!ects on vibration of rotation applied
about axes in the plane of the ring, as well as the polar axis.

2. ANALYSIS

It is useful to begin by noting that the modes of #exural vibration of non-rotating rings of
uniform rectangular cross-section may be classi"ed as either in-plane or out-of-plane
modes. They occur in degenerate pairs, with equal natural frequencies, at a mutual angle of
n/2p where p is the number of nodal diameters; see Figures 1 and 2 (a list of notation is given
in Appendix B). If the ring has dimensional imperfection [9, 10], or is manufactured from an
anisotropic material [11] there may be splits in the frequency pairs. For operation as a rate
gyro, these splits must ideally be reduced to a minimum, often using some form of frequency
trimming [12] involving the addition or removal of material. In the present paper, the
equations of motion will initially be derived by assuming the ring to be perfectly
symmetrical, but the e!ects of imperfection will be represented in the "nal equations of
motion.

Consider now the case of a #exible ring, as shown in Figure 3. The ring is uniform and
isotropic and is subjected to applied angular velocity components, X

X
, X

Y
and X

Z
acting

axes Ox, Oy and Oz respectively, which are "xed in the undeformed ring. For the ring to be
used as a practical rate sensor, it must be supported in some way. This can be achieved by
using a number of support legs in the plane of the ring [1]. The supports are designed
to have e!ective sti!ness and mass values that are small compared to those of the ring
so that, in the relevant #exural modes, the elastic deformation of the assembly is dominated
by the ring. For simplicity of presentation, the supports are neglected in the following
analysis.
Figure 1. In-plane modes of non-rotating ring with p"2, 3, 4 nodal diameters.



Figure 2. Out-of-plane modes of non-rotating ring with p"2, 3, 4 nodal diameters.

Figure 3. The ring model with enlarged view of displacements.
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In-plane and out-of-plane elastic deformation of the ring is described in terms of four
generalized co-ordinates Q

I1
, Q

I2
, Q

O1
, Q

O2
, which are based on the eigenvectors of

a non-rotating circular ring, as will be described in the following section. The corresponding
physical displacements of the ring comprise in-plane radial and tangential displacements,
w and v, an out-of-plane translation, u and twisting, /. Limiting the number of generalized
co-ordinates to four is justi"ed in the present analysis because the primary interest is in
cases where the natural frequencies of the relevant in-plane and out-of-plane modes of the
non-rotating ring are themselves closely spaced, but are well separated from the other
modes. Under these conditions, the de#ected shapes in free vibration will be dominated by
the selected generalized coordinates. The kinetic and strain energies of the rotating ring can
be expressed in terms of the generalized co-ordinates and then substituted into Lagrange's
equation to obtain the equations of motion. The details are given in the following sections.

2.1. DISPLACEMENTS

The in-plane radial displacement, w, and tangential displacement, v, at an angular
position, h, can be expressed in terms of generalized co-ordinates Q

I1
(t) and Q

I2
(t) as [13]

G
w

vH"Q
I1

(t)G
n sin nh
cos nh H#Q

I2
(t) G

n cos nh
!sin nhH, (1)

where the vectors associated with each generalized co-ordinate are taken as the eigenvectors
for in-plane modes of vibration of a non-rotating inextensible circular ring for modes with
n nodal diameters (n"2, 3, 4,2). Here, h"0 coincides with Ox (see Figure 3).

The out-of-plane displacement of the ring section consists of a combination of
translation, u, normal to the plane of the ring and twisting, /, about the centroidal axis (see
Figure 3). The out-of-plane displacements of the ring will be expressed in terms of
generalized co-ordinates, Q

O1
(t) and Q

O2
(t) as [13]

G
u

/H"Q
O1

(t)G
1

!i2mH cos i (h!b)#Q
O2

(t)G
!1

i2m Hsin i (h!b), (2)

where

m"
1

a C
1#k

1#i2kD, k"
GC

T
EI

x

and C
T
"

cr3
t
a3
l

r2
t
#a2

l

.

Again, the vectors associated with the generalized co-ordinates are taken as the eigenvectors
of out-of-plane vibrations of an isotropic non-rotating inextensible circular ring for modes
with i nodal diameters (i"2, 3, 4,2). In the above equations, a is the mean radius of the
ring, r

t
and a

l
are the radial thickness and axial length of the ring respectively and c is

a function of the ratio of r
t
to a

l
with values in the range 0)28}0)33 [13]. I

x
is the second

moment of area of the ring section and G and E are the shear and Young's moduli values for
the material respectively.

The angle, b, in equation (2), accounts for a possible angular misalignment between the
in-plane and out-of-plane generalized co-ordinates. For the ring to be used successfully as
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a rate sensor, the angle, b, should ideally be zero to avoid unwanted coupling between the
generalized co-ordinates. In practice, the ring would be trimmed to make b"0. Therefore,
to avoid unnecessary complexity whilst retaining the central features of the analysis, it will
be assumed in the following analysis that b"0.

2.2. ENERGY EXPRESSIONS

The kinetic energy of an element of the ring can be expressed as the sum of the
contributions due to the velocity v

abs
, of the centroid of the cross-section and to the angular

velocity of the element due to twisting /0 and to the applied rate components, X
X
, X

Y
, X

Z
. It

is convenient to express the linear and angular velocities in components along the local
axial, tangential and radial directions, denoted by unit vectors i, j, k (see Figure 3). The
summation over the entire ring can then be expressed as

¹"

1

2
oAa P

2n

0

Dv
abs

D2 dh#
1

2
oJaP

2n

0

D/0 #f (X
X
, X

Y
) D2 dh, (3)

where o, A and J de"ne the density of the material, the cross-sectional area and the polar
second moment of area of the ring section, /0 can be expressed in terms of the generalized
co-ordinates by using equation (2) and f(X

X
, X

Y
) represents the resolved components of

applied rate about Ox and Oy. The absolute velocity of a general point on the ring at
position r(h) can be expressed as

v
abs

"

dr

dt
#XKr (4)

where X is the angular velocity of the local reference axes, given by

X"!X
Z
i#(X

Y
cos h!X

X
sin h) j#(X

X
cos h#X

Y
sin h)k. (5)

r can be described in terms of the displacements u, v and w in the local axial, tangential and
radial directions (see Figure 3). By using equations (1) and (2) the position of the general
point can then be expressed in terms of the generalized co-ordinates as follows:

r(h)"(Q
O1

cos ih!Q
O2

sin ih)i#(Q
I1

cos nh#Q
I2

sin nh)j

#(a#Q
I1
nsin nh#Q

I2
ncos nh)k. (6)

Substituting equations (5) and (6) into equation (4) gives the absolute velocity components
in terms of several trigonometric functions and the generalized co-ordinates.

The kinetic energy, equation (3), can now be evaluated, and this leads to integrals whose
magnitudes depend on the values of n and i and the relationship between them. Several
terms have non-zero coe$cients n$1"i and are zero otherwise.

It is reasonable to neglect squares and products of X
X
, X

Y
, X

Z
since, in practice, the

applied angular velocities are much smaller (x&10~4) than the natural frequencies of the
device and inertia forces due to centripetal acceleration are very small. For n*2, the kinetic
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energy can now be expressed as
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N. (7)

The subscripts of the form n#1"i, etc., indicate the combinations of i and n for which the
relevant term is non-zero.

The strain energy due to in-plane bending can be calculated as [14]

;
IP
"

EI
z

2a3 P
2n

0
C
L2w
Lh2

#wD
2
dh"

EI
z
nn2(n2!1)2

2a3
(Q2

I1
#Q2

I2
) (8)

where E and I
z
are the Young's modulus of the material and the second moment of area

about the centroidal axis normal to the plane of the ring. The radial displacement, w, is
described in terms of the generalized co-ordinates, Q

I1
and Q

I2
by equation (1). The strain

energy due to out-of-plane bending and twisting can be expressed as [15]
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where
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1
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!/B and k

2
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1

a A
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#
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Substituting for / and u in equation (10) using equation (2) and evaluating the integrals of
equation (9) gives

;
OP

"

i2 (i2!1)2n
2a3(1#i2k)2

[EI
x
i2k2#GC

T
](Q2

O1
#Q2

O2
). (11)

Note that n"1 and i"1 correspond to rigid-body motion of an unsupported ring and the
resulting zero strain energy is thus expected.

2.3. EQUATIONS OF MOTION

Substituting the energy expressions into Lagrange's equation [16] in the form

d

dt A
L¹
LQQ

p
B!

L¹
LQ

p

#

L;
LQ

p

"0, p"I1, I2, O1, O2, (12)
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leads to the equations of motion for free, undamped vibration. Substituting equations (7), (8)
and (11) into equation (12) gives, after a little algebra, the equations of motion in the form

[M]MqK N#[G]MqR N#[K]MqN"M0N, (13)

where
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Here R"[EI
x
i2k2#GC

T
], M

I1
, M

O1
, K

I1
, etc., are de"ned in Appendix A and

[q]"MQ
I1
, Q

I2
, Q

O1
, Q

O2
NT. (17)

A number of points about the above equations require further comment at this stage. The
mass and sti!ness matrices, equations (14) and (16), contain the terms, dm

I1
, etc., and dk

I1
, etc.,

in addition to the terms which follow from the kinetic energy and strain energy expressions for
the uniform ring, equations (7), (8) and (11). These additional (small) terms have been included
to allow for the fact that, in practice, the ring may not be perfectly axi-symmetric. The e!ects
of small departures from perfect circularity are quite complex and have been considered in
detail in references [9}11]. For the present purposes, however, it is su$cient simply to note
that imperfection would give rise to small additional terms in the mass and sti!ness matrices
whose practical e!ect would be to split the otherwise degenerate pairs of natural frequencies
of the non-rotating ring. It has been assumed here that the imperfection is such that the
o!-diagonal terms in the mass and sti!ness matrices are all zero. This is a special case, chosen
for simplicity to illustrate the frequency-splitting e!ects without causing additional coupling
between the generalized co-ordinates. The e!ect of any non-uniformity in the mass
distribution on the gyroscopic coupling matrix [G] has also been ignored. This is justi"ed on
the grounds that the input rates, X

X
, X

Y
, X

Z
are small and therefore the e!ect on the predicted

motion of any small changes to the gyroscopic coupling terms will be negligible.
When the rate input is zero, equation (13) uncouple into four separate equations of motion,

one for each generalized co-ordinate. When rate is applied about all three axes, the presence of
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terms in the gyroscopic coupling matrix, equation (15) shows the Coriolis coupling between
various combinations of in-plane and out-of-plane generalized co-ordinates. It can be seen
that rate applied about the polar axis, X

Z
produces coupling between Q

I1
and Q

I2
for any

value of n. This is the basis on which the existing single-axis rate sensor [1] operates. Applied
rate about the polar axis does not couple in-plane and out-of-plane motions. However,
angular velocity components, X

X
and X

Y
about axes in the plane of the ring do produce

coupling between in-plane and out-of-plane motions, but only for particular combinations of
i and n, given by (n$1"i).

3. SOLUTIONS OF THE EQUATIONS OF MOTION

The principle of operation of a vibrating ring structure as a multi-axis rate sensor is
described in reference [4], in which it is shown that it is desirable to select the dimensions of
the ring so that the natural frequencies of the relevant modes of the non-rotating ring are
equal. The natural frequencies and mode shapes for non-rotating inextensible rings are
already well known [13] and ring dimensions can be chosen to match the required natural
frequencies, if the ring is dimensionally perfect. In practice, small imperfections are inevitably
present to some degree and these will give rise to small di!erences between the natural
frequencies. It is therefore useful at this stage to assume that the natural frequencies of the
non-rotating ring are distinct. These will be denoted by u

O1
, u

O2
, u

I1
, u

I2
for the out-of-plane

and in-plane modes respectively, as de"ned in Appendix A. For free undamped vibration, the
solutions to equations (13) take the form

MqN"MQM Nexp( jut) where MQM NT"MQM
I1
, QM

I2
, QM

O1
, QM

O2
N (18)

and QM
I1
, etc., represent the complex amplitudes of the generalized co-ordinates. Substituting

equation (18) into equation (13) and making use of equations (14)}(16), gives the characteristic
equation for the system, after some algebraic manipulation, as
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I O I
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It may be noted that those terms in the coe$cients C
O2

C
6
given above which depend on the

applied rates of turn, X
X
, X

Y
, X

Z
, are much smaller in magnitude than the terms that are not

associated with applied rate, because the analysis is based on the assumption that X;u. The
e!ects of the applied rate on the magnitudes of the natural frequencies will therefore be small,
albeit important. For the general case where all the natural frequencies of the non-rotating
ring are distinct and all the components of applied rate of turn are present, the natural
frequencies can be found from equation (19), but the general e!ects of applied rate are not
obvious. It is therefore useful to consider some more tractable, special cases to help provide
some insight into the general behaviour.

3.1. RATE APPLIED ABOUT THE POLAR AXIS

For the case where X
X
"0"X

Y
, X

Z
O0 the governing equations for out-of-plane motion,

Q
O1

and Q
O2

, uncouple individually from the governing equations for in-plane motion, Q
I1

and Q
I2

, which remain coupled (see equations (13) and (15)). In this situation the coe$cients of
the characteristic equation (equations (20)}(23)) simplify considerably and equation (13)
factorizes as

(u2!u2
O1

)(u2!u2
O2

)Cu4!u2Au2
I1
#u2

I2
#

G2
Z
X2

Z
M2

I
B#u2

I1
u2

I2D"0. (24)

The out-of-plane modes of the ring are una!ected by the applied rate in this case and their
natural frequencies remain constant at u

O1
, u

O2
. Upon noting that X

Z
;u

I1
, u

I2
, the roots of

the quadratic in the square bracket in equation (24) can be written with very good
approximation as

u2+
u2

I1
#u2

I2
2 C1$S

(u2
I1
!u2

I2
)2

(u2
I1
#u2

I2
)2
#

2G2
Z
X2

Z
M2

I
(u2

I1
#u2

I2
)D. (25)

The amplitude ratios (mode shapes) corresponding to these natural frequencies follow in the
usual way when equation (18) is substituted into equation (13) and can be written in the form

QM
I1

QM
I2

"!

jG
Z
X

Z
u

M
I
(u2

I1
!u2)

. (26)

Note that the mode shape expression, equation (26), is complex, indicating that the relative
motions of the two generalized co-ordinates, Q

I1
and Q

I2
, are in quadrature.

If the ring is dimensionally perfect so that u
I1
"u

I2
"u

I
then it follows that the roots of

equation (25) can be written as

u+u
IC1#

G
Z
X

Z
2M

I
u

I
D and u+u

IC1!
G

Z
X

Z
2M

I
u

I
D, (27)

equation (27) illustrates that, for small input rates, the initially equal frequencies of the
in-plane modes split linearly with applied rate about the polar axis. However, if, due to
dimensional imperfection, the initial split between u

I1
and u

I2
is signi"cantly greater than the

applied rate so that the "rst term under the square root in equation (25) dominates the second,
then the applied rate has negligible e!ect on the natural frequencies which, from equation (25),
are u+u

I1
, u+u

I2
. When the natural frequencies given by equation (27) are substituted
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into equation (26) the corresponding amplitude ratios follow as
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Upon noting that X
Z
/u

I
;1, equation (28) can be further simpli"ed and written as

QM
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/QM

I2
+$j. These points are illustrated more fully in section 4 of this paper.

3.2. RATE APPLIED ABOUT AXES IN THE PLANE OF THE RING

Consider the case where X
X
O0 but X

Y
"0"X

Z
. In this case, substitution of the

solutions, equation (18), into the equations of motion, equation (13), leads to the following set
of equations for the amplitudes in which the motion of QM
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The frequency equation corresponding to generalized co-ordinates QM
I1

and QM
O1

follows from
equation (29) as
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from which the natural frequencies can be expressed with good approximation as
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O1
)2
#

2G2
X
X2

X
M

O
M

I
(u2

I1
#u2

O1
)D . (31)

The amplitude ratios, QM
I1
/QM

O1
, etc., can be determined from equation (29) and are of the form

QM
I1

QM
O1

"!

juG
X
X

X
M

I
(u2

I1
!u2)

. (32)

If the dimensions of the ring are chosen such that the natural frequencies of the relevant
in-plane and out-of-plane modes of the non-rotating ring are equal, i.e., u

I1
"u

O1
"u

OI
say,

then the roots of equation (31) can be written as

u+u
O1C1#

G
X
X

X
2u

O1
JM

O
M

I
D and u+u

O1C1!
G

X
X

X
2u

OI
JM

O
M

I
D. (33)

The amplitude ratios in this case can be found by using equations (32) and (33), and, upon
noting that X

X
/u

OI
;1, the amplitude ratios can be expressed as

QM
I1

QM
O1

"

QM
I2

QM
O2

+$jS
M

O
M

I

"$jS
1#Ji4m2/A

n2#1
, (34)
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where the $signs correspond to those in equation (33). This simple result indicates that,
under the conditions considered, the amplitude ratios are virtually independent of input rate
and depend only on the e!ective modal masses of the relevant in-plane and out-of-plane
modes of the non-rotating ring.

The natural frequencies and amplitude ratios for the system comprising generalized
co-ordinates QM

I2
and QM

O2
can be obtained in a similar fashion.

The analysis for the case where rate is applied about the Oy axis only (X
Y
O0 but

X
X
"0"X

Z
) follows the same lines as shown above, but in that case the motion of QM

I1
and

QM
O2

is uncoupled from the motion of QM
I2

and QM
O1

. Corresponding expressions for the natural
frequencies and mode shapes can be derived.

When rate is applied simultaneously about Ox and Oy (X
X
O0, X

Y
O0, X

Z
"0), the

analysis becomes more complicated because the generalized co-ordinates do not uncouple,
and does not lead easily to simple expressions for the natural frequencies and amplitude
ratios. However, in the particular case where u

I1
"u

O1
"u

I2
"u

O2
"u

OI
(i.e.,

dimensionally perfect ring with dimensions chosen such that the natural frequencies of the
relevant in-plane and out-of-plane modes of the non-rotating ring are equal), the coe$cients
of the characteristic equation, equation (19), simplify considerably to the following:

C
0
"u8

OI
, (35)

C
2
"!4u6

OI
!2u4

OI

G2
X
X2

X
#G2

Y
X2

Y
M

O
M

I

, (36)

C
4
"6u4

OI
#4u2

OI

(G2
X
X2

X
#G2

Y
X2

Y
)

M
O
M

I

#

[G2
X
X2

X
#G2

Y
X2

Y
]2

M2
O
M2

I

, (37)

C
6
"!4u2

OI
!

2(G2
X
X2

X
#G2

Y
X2

Y
)

M
O
M

I

, (38)

and the characteristic equation factorizes as

C(u2!u2
OI

)2!u2
(G2

X
X2

X
#G2

Y
X2

Y
)

M
O
M

I
D
2
"0. (39)

The repeated roots of equation (39) can be written with good approximation as

u+u
OIC1#

JG2
X
X2

X
#G2

Y
X2

Y
2u

OI
JM

O
M

I
D and u+u

OIC1!
JG2

X
X2

X
#G2

Y
X2

Y
2u

O1
JM

O
M

I
D. (40)

Upon noting that G2
X
"G2

Y
, a comparison of equations (40) and (33) shows that, for the special

case under consideration, the e!ect on the natural frequencies of a particular resultant value of
externally applied rate is independent of the axis about which the rate is applied. This is
consistent with intuition because the circumferential position of the modes is arbitrary if the
ring is perfect.

3.3. RATE APPLIED SIMULTANEOUSLY ABOUT AN IN-PLANE AXIS AND THE POLAR AXIS

Consider the special case where u
I1
"u

O1
"u

I2
"u

O2
"u

O1
and the input rates are

applied such that X
X
O0, X

Y
"0, X

Z
O0. For this situation, the coe$cients of the
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characteristic equation, equations (19)}(23), simplify so that the characteristic equation,
equation (19), can be factorized in the following form:

C(u2!u2
OI

)2!u2
G2

X
X2

X
M

O
M

I

#(u2!u2
OI

)u
G

Z
X

Z
M

I
D

]C(u2!u2
OI

)2!u2
G2

X
X2

X
M

O
M

I

!(u2!u2
OI

)u
G

Z
X

Z
M

I
D"0.

(41)

Each of the expressions in square brackets in equation (41) leads to two positive values of u2

that are roots of the characteristic equation. It can be seen that when X
X
"0, X

Z
"0,

equation (41) has four equal roots, u
OI

. Upon noting that X
X
, X

Z
;u

OI
, it is clear that when

X
X
O0, X

Z
O0 the roots of equation (41) will di!er only slightly from u

OI
, which is con"rmed

by numerical evaluation of the roots. This fact makes it possible to construct a perturbation
solution for the roots of equation (41) as follows.

The bracketed terms in equation (41) can be expanded and written as

u4G
G

Z
X

Z
M

I

u3!A2u2
OI
#

G2
X
X2

X
M

O
M

I
Bu2$u2

OI

G
Z
X

Z
M

I

u#u4
OI
"0. (42)

Upon noting that the roots of equation (42) are close to u
OI

, they can be expressed as

u"u
OI

(1#e), (43)

where e is a small parameter of order O(X
X,Z

/u
OI

). Substituting equation (43) into each of the
two forms of equation (42) and retaining terms up to those of order O(e2) leads to two
quadratics which provide four distinct values of e as follows:

e
1,3

"!

G
Z
X

Z
4u

OI
M

I

G

1

4u
OI

M
I
SG2

Z
X2

Z
#4

M
I

M
O

G2
X
X2

X
,

e
2,4

"#

G
Z
X

Z
4u

OI
M

I

G

1

4u
OI

M
I
SG2

Z
X2

Z
#4

M
I

M
O

G2
X
X2

X
. (44)

Equations (43) and (44) provide simple, accurate approximations for the natural frequencies of
the rotating ring under the condition where rate is simultaneously applied about an in-plane
axis and the polar axis. In the case where either X

X
"0 or X

Z
"0 the above approximations

simplify as expected to give equation (27) or (33).
The ratios of the amplitudes of the generalized co-ordinates which de"ne the mode

shapes corresponding to each of the natural frequencies can be found routinely by back-
substitution using equations (18) and (13), but the resulting expressions do not lend
themselves to useful simpli"cation. A numerical example of this case is presented in
section 4.1.3.

4. NUMERICAL EXAMPLES

It is desirable to quantify the e!ects that applied rates will have on the natural frequencies
and mode shapes of the ring structure. This will be done by means of numerical examples
based on a ring of nickel/steel alloy (Young's modulus and shear modulus values are 170]109
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and 653]108 Pa respectively and the density is 8250 kg/m3) with mean radius 20 mm and
radial thickness 1 mm. The axial thickness of the ring is selected to match the natural
frequency of the n"4 in-plane modes to either the i"3 or the i"5 out-of-plane modes for
the non-rotating ring. These values apply to a prototype multi-axis rate sensor. Initially, we
will consider the ideal case in which all the relevant natural frequencies are matched
&7)5 kHz. In practice, due to manufacturing tolerances there is likely to be a frequency split
between mode frequencies and some speci"c cases of this will be investigated. We consider
a range of constant rate inputs in the range 0}10 Hz applied about each axis individually.

4.1. EQUAL NON-ROTATING NATURAL FREQUENCIES

Consider the case where the axial length is chosen to match the frequencies of the n"4
in-plane modes to either the i"3 or the i"5 out-of-plane modes at a frequency
of &7587 Hz in the non-rotating ring, which is perfectly axi-symmetric (i.e.,
u

I1
"u

I2
"u

O1
"u

O2
).

4.1.1. Rate applied about the polar axis

For rates X
z
"1, 5, 10 Hz applied about the polar axis, equation (24) gives values for the

four natural frequencies (u
1Z

, u
2Z

, u
3Z

, u
4Z

) of the rotating ring as shown in Table 1. Figure 4
shows the variations of u

1Z
and u

2Z
. When no rate is applied the natural frequencies of the

ring are identical, as expected. As the rate is increased, u
1Z

increases whilst u
2Z

decreases.
Both values show a sensibly linear variation with applied rate for the range of X

z
considered,

in agreement with the approximate solution of the frequency equation as given in equation
(27). The frequency split is symmetrical about the natural frequency for the non-rotating ring
and increases to give a split of &9 Hz at an applied rate of 10 Hz which is &0)12% of the
mean value.

The corresponding amplitude ratios, QM
I1
/QM

I2
, for the rotating ring can be found by using

equation (26) or (28). For the range of values of X
z

considered here, the magnitude of the
amplitude ratio is equal to unity to four signi"cant "gures.

4.1.2. Rate applied about an in-plane axis

Consider rates X
x
"1, 5, 10 Hz applied about the in-plane Ox axis. (Note that the same

rates of turn applied about any axis in the plane of the ring would lead to the same patterns of
behaviour as predicted for the cases considered below.) For the ideal case where
u

I1
"u

I2
"u

O1
"u

O2
"u

OI
the (repeated) natural frequencies of the rotating ring are given
TABLE 1

Natural frequencies when rate is applied about the polar
axis, Oz, when n"4 and i"3 or 5

X
z

u
1Z

u
2Z

u
3Z
"u

4Z
(Hz) (Hz) (Hz) (Hz)

0 7587)4 7587)4 7587)4
1 7587)9 7586)9 7587)4
5 7589)8 7585)1 7587)4

10 7592)1 7582)7 7587)4

Note: These results apply for the case where u
I1
"u

I2
"u

O1
"u

O2
.



Figure 4. Natural frequency variations with rate applied about the polar axis, Oz (n"4;*r*. u
1Z

;*j*, u
2Z

).

TABLE 2

Natural frequencies and amplitude ratios for rates applied about the
in-plane Ox axis when n"4 and i"5

X
x

(Hz)

u
1X

"u
3X

(Hz)

QM
I1

QM
O1

"!

QM
I2

QM
O2

u
2X

"u
4X

(Hz)

QM
I1

QM
O1

"!

QM
I2

QM
O2

0 7587)4 7587)4

1 7587)7 !j0)2634 7587)1 j0)2634
(u

1X
"u

3X
) (u

2X
"u

4X
)

5 7589)1 !j0)2634 7585)7 j0)2634
(u

1X
"u

3X
) (u

2X
"u

4X
)

10 7590)8 !j0)2634 7584)1 j0)2634
(u

1X
"u

3X
) (u

2X
"u

4X
)

Notes: These results apply for the case where u
I1
"u

I2
"u

O1
"u

O2
(for n"4, i"5).

Bracketed symbols indicate which solution for the natural frequency is substituted into
equation (27). Amplitude ratios are given to 4 signi"cant "gures.
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by the roots of equation (30), which can be written with good approximation as shown by
equation (34).

Consider "rst the case where the axial thickness (&0)617 mm) is chosen to match the n"4
in-plane frequencies to the i"5 out-of-plane mode frequencies for the non-rotating ring. For
this case, the natural frequencies of the rotating ring are shown in Table 2. The variation in the
natural frequencies, for X

x
in the range 0}10 Hz, is shown graphically in Figure 5. When no

rate is applied about the Ox axis, all natural frequency values are equal to the natural
frequency of the non-rotating ring, as expected. When rate is applied, u

1X
("u

3X
) increases

whilst u
2X

("u
4X

) decreases. As predicted, both values show a sensibly linear variation with
increasing applied rate for X

x
in the range considered. The split between the frequencies is

symmetrical about the natural frequency for the non-rotating ring and increases to give
a frequency split of &6)7 Hz at an applied rate of 10 Hz which is &0)09% of the mean value.

The amplitude ratios for the rotating ring, calculated by using equation (32) are shown in
Table 2 as the ratio of QM

I1
/QM

O1
("!QM

I2
/QM

O2
) for X

x
"1, 5, 10 Hz. These are equal in

magnitude and opposite in sign depending on whether u
1X

("u
3X

) or u
2X

("u
4X

) is used, and
are independent of X

x
to seven signi"cant "gures. This is consistent with the expressions given

in equation (34), which provide excellent simple approximations for the amplitude ratios for
low values of rate input.



Figure 5. Natural frequency variations with rate applied about the in-plane Ox axis when u
I1
"u

I2
"u

O1
"

u
O2

. [n"4: *r*, u
1X

"u
3X

(i"5); *j*, u
2X

"u
4X

(i"5); *m*, u
1X

"u
3X

(i"3); *]*, u
2X

"u
4X

(i"3)].

TABLE 3

Natural frequencies and amplitude ratios for rates applied about the
in-plane Ox axis when n"4 and i"3

X
x

(Hz)

u
1X

"u
3X

(Hz)

QM
I1

QM
O1

"!

QM
I2

QM
O2

u
2X

"u
4X

(Hz)

QM
I1

QM
O1

"!

QM
I2

QM
O2

0 7587)4 7587)4

1 7588)0 j0)2538 7586)8 !j0)2538
(u

1X
"u

3X
) (u

2X
"u

4X
)

5 7590)3 j0)2538 7584)2 !j0)2538
(u

1X
"u

3X
) (u

2X
"u

4X
)

10 7593)2 j0)2538 7581)6 !j0)2538
(u

1X
"u

3X
) (u

2X
"u

4X
)

Notes: These results apply for the case where u
I1
"u

I2
"u

O1
"u

O2
(for i"3).

Bracketed symbols indicate which solution for the natural frequency is substituted into
equation (27). Amplitude ratios are given to 4 signi"cant "gures.
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Consider now the case where an axial thickness (&2)159 mm) is chosen to match the n"4
in-plane mode frequency and the i"3 out-of-plane mode frequency for the non-rotating ring.
For this case the corresponding natural frequencies and amplitude ratios of the rotating ring
are shown in Table 3. The variations in natural frequencies are shown in Figure 5 (along with
the values for the case where i"5). The general pattern of behaviour for i"3 is seen to be the
same as for i"5, but the frequency splitting is slightly greater because the di!erent value of i,
and the di!erent dimensions of the ring cross-section, give rise to a di!erent value of M

O
. The

frequency split is again symmetrical about the natural frequency for the non-rotating ring and
at an applied rate of 10 Hz the split increases to &11)6 Hz which is &0)15% of the mean
value. The amplitude ratios for the case i"3 follow a similar pattern to the previously
discussed case where i"5.

4.1.3. Rate applied about an in-plane axis and the polar axis simultaneously

Results are presented for the case where rates in the range X
X
"X

Z
"1, 5, 10 Hz are

applied about the Ox and Oz axes simultaneously with X
Y
"0. As before, we consider



TABLE 4

Natural frequencies for rates applied simultaneously about
the in-plane Ox axis and the polar axis, Oz, when n"4

and i"3

X
x
"X

z
u

1XZ
u

2XZ
u

3XZ
u

4XZ
(Hz) (Hz) (Hz) (Hz) (Hz)

0 7587)4 7587)4 7587)4 7587.4
1 7587)8 7587)0 7588)3 7586)5
5 7589)5 7585)4 7591)8 7583)0

10 7591)5 7583)3 7596)2 7578)6

Note: These results apply for the case where u
I1
"u

I2
"u

O1
"u

O2
(for n"4, i"3).

Figure 6. Natural frequency variations with equal rates applied about the in-plane Ox axis and the polar axis Oz
when u

I1
"u

I2
"u

O1
"u

O2
. [n"4, i"3: *r*, u

1XZ
; *j*, u

2XZ
; *m*, u

3XZ
; *]*, u

4XZ
].
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a perfectly axi-symmetric ring with dimensions chosen to match frequencies of the
n"4 in-plane mode and the i"3 out-of-plane mode of the non-rotating ring. The
relevant natural frequencies (u

1XZ
, u

2XZ
, u

3XZ
, u

4XZ
) of the rotating ring are found by using

equation (41). They are given in Table 4 and illustrated graphically in Figure 6 which, as in
the other cases, shows a sensibly linear variation in the natural frequencies as the applied
rate increases with percentage frequency splits of the same order as when the rate components
are applied individually. The corresponding amplitude ratios are given in Table 5. Finally,
Tables 6 and 7 present natural frequency and amplitude ratio results for the case where
dimensions are chosen to match frequencies of the n"4 and i"5 modes on the non-rotating
ring.

In the above cases, the simultaneous presence of applied rate about in-plane and polar axes
causes frequency splitting between all four relevant natural frequencies and the motions of all
four generalized co-ordinates are coupled. It can be seen from Tables 5 and 7 that, under the
considered conditions, the relative amplitudes of QM

I1
and QM

I2
are the same (to within more

than four signi"cant "gures), as are the relative amplitudes of QM
O1

and QM
O2

, and that the ratios
of those magnitudes are constant. This is consistent with the observed behaviour when the
rate is applied individually about either the polar axis or about an in-plane axis. The fact that
the relative amplitudes of QM

O1
and QM

O2
are greater than those of QM

I1
and QM

I2
in the examples

chosen has no particular signi"cance and depends on a number of factors including the
relative magnitudes of the rate components, X

X
and X

Z
, and the values of the coe$cients G

X
,

G
Z

and M
O
, M

I
.



TABLE 5

Amplitude ratios when rate is applied about the in-plane Ox axis and the polar axis, Oz
simultaneously when n"4 and i"3

X
x
"X

z
"1 X

x
"X

z
"5 X

x
"X

z
"10

(Hz) (Hz) (Hz)

QM
I1

1 1 1 1 1 1

QM
I2

$ju1XZu2XZ

Gju3XZu4XZ

$ju1XZu2XZ

Gju3XZu4XZ

$ju1XZu2XZ

Gju3XZu4XZ

QM
O1

Gj 5)998u1XZu2XZ

Gj2)980u3XZu4XZ

Gj5)998u1XZu2XZ

Gj2)980u3XZu4XZ

Gj5)998u1XZu2XZ

Gj2)980u3XZu4XZ

QM
O2

5)998u1XZu2XZ

!2)980u3XZu4XZ

5)998u1XZu2XZ

!2)980u3XZu4XZ

5)998u1XZu2XZ

!2)980u3XZu4XZ

Notes: These results apply for the case where u
I1
"u

I2
"u

O1
"u

O2
(for i"3, n"4). The subscripts denote

which frequency value from Table 4 is substituted into the amplitude ratio equation. Amplitude ratios are given to
four signi"cant "gures. The subscripts relate to the corresponding element of the $sign, where one is shown.

TABLE 6

Natural frequencies when rate is applied simultaneously
about the in-plane Ox axis and the polar axis, Oz when

n"4 and i"5

X
x
"X

z
u

1XZ
u

2XZ
u

3XZ
u

4XZ
(Hz) (Hz) (Hz) (Hz) (Hz)

0 7587)4 7587)4 7587)4 7587.4
1 7587)6 7587)2 7588)1 7586)7
5 7588)4 7586)4 7590)8 7584)1

10 7589)4 7585)4 7594)1 7580)7

Notes: These results apply for the case where u
I1
"u

I2
"u

O1
"u

O2
(for n"4, i"5).

TABLE 7

Amplitude ratios when rate is applied simultaneously about the in-plane Ox axis and the polar
axis, Oz when n"4 and i"5

X
x
"X

z
"1 X

x
"X

z
"5 X

x
"X

z
"10

(Hz) (Hz) (Hz)

QM
I1

1 1 1 1 1 1

QM
I2

$ju1XZu2XZ

Gju3XZu4XZ

$ju1XZu2XZ

Gju3XZu4XZ

$ju1XZu2XZ

Gju3XZu4XZ

QM
O1

$j7)575u1XZu2XZ

$j2)242u3XZu4XZ

$j7)575u1XZu2XZ

$j2)242u3XZu4XZ

$j7)575u1XZu2XZ

$j2)242u3XZu4XZ

QM
O2

!7)575u1XZu2XZ

2)242u3XZu4XZ

!7)575u1XZu2XZ

2)242u3XZu4XZ

!7)575u1XZu2XZ

2)242u3XZu4XZ

Notes: For the case where u
I1
"u

I2
"u

O1
"u

O2
(for i"5, n"4). The subscripts denote which frequency

value from Table 6 is substituted into the amplitude ratio equation. Amplitude ratios are given to four signi"cant
"gures. The subscripts relate to the corresponding element of the $sign, where one is shown.
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TABLE 8

Natural frequencies when rate is applied about the polar
axis when there is a 1 Hz split between the n"4 and i"3

modes of the non-rotating ring

X
z

u
1Z

u
2Z

u
3Z
"u

4Z
(Hz) (Hz) (Hz) (Hz)

0 7587)4 7587)4 7588)4
1 7587)9 7586)9 7588)4
5 7589)8 7585)1 7588)4

10 7592)1 7582)7 7588)4

Notes: These results apply for the case where u
I1
"u

I2
"u

I
(n"4)

and u
O1

"u
O2

"u
O

(i"3) and u
O
"u

I
#1 (Hz).
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4.2. INITIAL FREQUENCY SPLIT BETWEEN IN-PLANE AND OUT-OF-PLANE MODES

Due to manufacturing tolerances and other imperfections there may be a split between
mode frequencies. To illustrate the e!ect of this, consider the case where, in the non-rotating
ring, the natural frequencies of the relevant pair of in-plane modes are equal (u

I1
"u

I2
"u

I
),

and the frequencies of the relevant pair of out-of-plane modes are also equal
(u

O1
"u

O2
"u

O
), but u

I
Ou

O
. We consider a 1 Hz (0)01%) split between the in-plane pair

and out-of-plane pair of modes (i.e. u
I
&7587 Hz and u

O
&7588 Hz), which is a practically

relevant example.

4.2.1. Rate applied about the polar axis

Consider applied rates X
z
"1, 5, 10 Hz as before. The relevant characteristic equation for

this case is equation (24) with u
I1
"u

I2
"u

I
and u

O1
"u

O2
"u

O
. It can be seen from

equation (24) that the out-of-plane modes are independent of the applied rate but the
frequencies of the in-plane modes are split by the applied rate. The natural frequencies are
shown in Table 8 and the amplitude ratios corresponding to u

1Z
and u

2Z
are essentially $j

as given by equation (28).

4.2.2. Rate applied about an in-plane axis

The natural frequencies and amplitude ratios for this case are given with good
approximation by equations (31) and (32) with u

I1
"u

I2
"u

I
and u

O1
"u

O2
"u

O
. Because

the ring is axi-symmetric, the natural frequencies are repeated.
In a similar fashion to section 4.1.2, we will consider the two cases where the n"4

inplane frequencies are close to the i"5 and i"3 out-of-plane frequencies
respectively, for the non-rotating ring. An initial 1 Hz split between the in-plane and
out-of-plane mode frequencies will be assumed. We will consider a rate input applied about
axis Ox, but the general behaviour will be the same for rates applied about any other in-plane
axis.

For the case n"4, i"5 the natural frequencies and amplitude ratios for X
x
"1, 5, 10 Hz

are shown in Table 9. When no rate is applied there is a 1 Hz split between the natural
frequency values as expected from equation (31). The variations in natural frequency with
increasing X

x
are shown graphically in Figure 7. As X

x
increases, u

1X
("u

3X
) increases whilst

u
2X

("u
4X

) decreases. At an applied rate of 1 Hz the split between the frequencies is &1)2 Hz.
This value is 80% greater than when all the natural frequencies are initially matched (see



TABLE 9

Natural frequencies and amplitude ratios for rates applied about the
in-plane Ox axis when there is a 1 Hz split between the n"4 and i"5

modes of the non-rotating ring

X
x

(Hz)

u
1X

"u
3X

(Hz)

QM
I1

QM
O1

"!

QM
I2

QM
O2

u
2X

"u
4X

(Hz)

QM
I1

QM
O1

"!

QM
I2

QM
O2

0 7588)4 7587)4

1 7588)5 !j0)08009 7587)3 j0)8667
(u

1X
"u

3X
) (u

2X
"u

4X
)

5 7589)7 !j0)1963 7586)2 j0)3536
(u

1X
"u

3X
) (u

2X
"u

4X
)

10 7591)3 !j0)2270 7584)5 j0)3057
(u

1X
"u

3X
) (u

2X
"u

4X
)

Notes: These results apply for the case where u
I1
"u

I2
"u

I
and u

O1
"u

O2
"u

O
and

u
O
"u

I
#1 (for i"5). Bracketed symbols indicate which solution for the natural

frequency is substituted into equation (27). Amplitude ratios are given to four signi"cant
"gures.

Figure 7. Natural frequency variations with equal rates applied about the in-plane Ox axis when u
I1
"u

I2
"u

I
and u

O1
"u

O2
"u

O
. [n"4:*r*, u

1X
"u

3X
(i"5);*j*, u

2X
"u

4X
(i"5);*m*, u

1X
"u

3X
(i"3);*]*,

u
2X

"u
4X

(i"3)].
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Table 2), indicating that at low values of applied rate, the natural frequency split is dominated
by the split due to the imperfection. At higher applied rates the natural frequency values show
a sensibly linear variation with applied rate, similar to that shown in Figure 5. At an applied
rate of 10 Hz the split is &6)8 Hz. This value is within 1)5% of the split at the same applied
rate when the natural frequencies are all initially matched. Therefore, at applied rates that are
considerably higher than the initial frequency split, the e!ects of applied rate dominate the
behaviour.

The amplitude ratios for the rotating ring are given by equation (32). It can be seen from
Table 9 that at very low input rates (X

x
(1 Hz) the amplitude ratios tend to zero or unity: i.e.,

when there is no input rate the modes involve either in-plane or out-of-plane motion, but not
both, as expected. With increasing values of X

x
the amplitude ratios change and, at higher

input rates (X
x
'10 Hz) where the input rate dominates the e!ect of the initial frequency split,

they tend towards the values given in Table 2 for the case where there is no di!erence between
the natural frequencies of the in-plane and out-of-plane modes of the non-rotating ring.



TABLE 10

Natural frequencies and amplitude ratios when rate is applied about the
in-plane Ox axis when there is a 1 Hz split between the n"4 and i"3

modes of the non-rotating ring

X
x

(Hz)

u
1X

"u
3X

(Hz)

QM
I1

QM
O1

"!

QM
I2

QM
O2

u
2X

"u
4X

(Hz)

QM
I1

QM
O1

"!

QM
I2

QM
O2

0 7588)4 7587)4

1 7588)7 j0)1163 7587)1 !j0)5545
(u

1X
"u

3X
) (u

2X
"u

4X
)

5 7590)9 j0)2138 7585)0 !j0)3015
(u

1X
"u

3X
) (u

2X
"u

4X
)

10 7593)7 j0)2329 7582)1 !j0)2767
(u

1X
"u

3X
) (u

2X
"u

4X
)

Notes: These results apply for the case where u
I1
"u

I2
"u

I
(n"4) and

u
O1

"u
O2

"u
O

(i"3) and u
O
"u

I
#1. Bracketed symbols indicate which solution for

the natural frequency is substituted into equation (27). Amplitude ratios are given to four
signi"cant "gures.
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For the case where there is a 1 Hz split between the non-rotating n"4 in-plane
frequencies and the i"3 out-of-plane mode frequencies, the natural frequencies and
amplitude ratios for the rotating ring are given in Table 10, and the frequency variation is also
shown in Figure 7. The pattern of behaviour is the same as that observed for the n"4, i"5
case and, again, at higher input rates, the amplitude ratio values tend to those shown in
Table 3.

5. CONCLUSION

The analysis presented in this paper shows that the natural frequencies and mode shapes of
a rotating ring structure are a!ected by components of angular velocity applied about any
axis. A vibrating ring structure therefore forms a feasible basis for a rate sensor capable of
detecting rate-of-turn applied about three mutually perpendicular axes. This practical
application provides the main motivation for the reported work.

Equations of motion are derived for the vibration of a ring which is subjected to angular
velocity applied simultaneously about the polar axis and two perpendicular axes in the plane
of the ring. Emphasis is placed on the case where the applied rate is much smaller than the
#exural natural frequencies of the non-rotating ring. It is shown that angular velocity applied
about axes in the plane of the ring couples the in-plane and out-of-plane motion of the ring,
and gives rise to complex mode shape vectors. The characteristic equation for the general case
is derived and a number of special cases are also considered, for which simple but accurate
approximate expressions for the natural frequencies and amplitude ratios are presented.

Due to manufacturing imperfections, there is often a frequency split between the natural
frequencies of the non-rotating ring. At applied rates which are of the same order of
magnitude as the frequency split, the e!ects of the initial split are signi"cant. At applied rates
which are considerably higher than the initial split, the e!ects of the frequency split are
negligible. The e!ects of an initial frequency split on the mode shapes are signi"cant for all
applied rates.
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Numerical examples are presented which quantify the magnitude of the changes in natural
frequency and mode shape which result from applied angular velocity.
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APPENDIX A

The natural frequencies for the non-rotating ring are

u2
I1
"

K
I1

(1#dk
I1
)

M
I1

(1#dm
I1
)
, u2

I2
"

K
I2

(1#dk
I1
)

M
I2

(1#dm
I2
)
,

u2
O1

"

K
O1

(1#dk
O1

)

M
O1
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)
, u2
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"
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(1#dk
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(1#dm
O2
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and M
I1
, etc., and K

I1
, etc., are the mass and sti!ness matrix coe$cients from equations (14)

and (16) respectively, given as

M
I
"oAan(n2#1), M

O
"oAanA1#

J4
i
m2

A B,

K
I
"

EI
z
nn2(n2!1)2

a3
, K

O
"

i2(i2!1)2Rn
a3(1#i2k)2

.

G
x
, G

y
and G

z
, are the magnitudes of the coe$cients related to X

X
, X

Y
and X

Z
respectively,

given as

G
X
"oAan(1Gn)n`1/i

n~1/i
, G

Y
"oAan(nG1)n`1/i

n~1/i
, G

Z
"4noAan.

APPENDIX B: NOMENCLATURE

a ring mean radius (m)
A cross-sectional area (m2)
a
l

ring axial length (m)
C

T
torsional coe$cient

E Young's modulus (Pa)
G shear modulus (Pa)
i number of out-of-plane nodal diameters
I second moment of area (m4)
J polar second moment of area (m4)
i, j, k unit vectors of local co-ordinate system
n number of in-plane nodal diameters
Q generalized co-ordinate
QM generalized co-ordinate amplitude (m)
r displacement vector of general point
r
t

radial thickness (m)
¹ kinetic energy (J)
; strain energy (J)
u out-of-plane displacement (m)
v in-plane tangential displacement (m)
w in-plane radial displacement (m)
v
abs

absolute velocity of ring element (m/s)
b angle of misalignment between in-plane and out-of-plane generalized co-ordinates

(rad)
k sti!ness ratio
/ out-of-plane twist of ring section (rad)
h angular co-ordinate (rad)
o density (kg/m3)
u natural frequency (Hz)
X applied rate (Hz)

Subscripts

I1 in-plane mode 1
I2 in-plane mode 2
O1 out-of-plane mode 1
O2 out-of-plane mode 2
Ox axis in the plane of the ring
Oy axis in the plane of the ring
Oz axis in the plane normal to the ring
IP in-plane
OP out-of-plane
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